Unusual Presentation of an Uncommon Malignancy: A 74-Year-Old Woman with Aggressive Fibromatosis of the Large Intestine Presenting as a Liver Mass and the Therapeutic Management

ABDEF 1 Christos Vallilas*
ABDEF 2 Stavros P. Papadakos*
DEF 3 Theodoros Androutsakos
B 4 Alexandros Pergaris
DEF 1 Panagiotis Sarantis
B 3 Eirini A. Apostolidi
DE 5 John Griniatsos
DE 1 Michalis V. Karamouzis
DE 3 Stavros Sougioultzis

* Christos Vallilas and Stavros P. Papadakos contributed equally

Corresponding Author:
Christos Vallilas, e-mail: Chris-vallilas@hotmail.com

Financial support: None declared
Conflict of interest: None declared

Patient: Female, 74-year-old
Final Diagnosis: Desmoid tumor
Symptoms: Abdominal pain • diarrhea
Clinical Procedure: —
Specialty: Gastroenterology and Hepatology • Oncology • Pathology • Surgery

Objective: Rare disease
Background: Desmoid tumors are a fibroblastic proliferation of soft tissues, with an extreme inclination for local dissemination and recurrence. Surgical excision is the usual treatment choice, with data regarding pharmaceutical treatment being scarce.

Case Report: A 74-year-old female patient was admitted to “Laikon” General Hospital of Athens, Greece presenting with acute kidney injury secondary to diarrhea. The ultrasound, CT, and abdominal MRI performed showed a 12×6×10 cm tumorous liver lesion. Biopsy of the lesion revealed loosely organized, mesenchymal tissue with spindle cells, and myxoid stroma. Immunochemistry was positive for SMA and b-catenin. Right hemicolectomy was performed with tumor-free surgical margins (R0 resection) and tamoxifen was initiated. Six months after the last MRI (3 months after the use of tamoxifen), a follow-up MRI was performed. The tumor had increased to 14.2×11×12.3 cm, and at the next follow-up it had grown to 20.3×19 cm maximal dimensions; no new metastases were found. The patient received sorafenib and pazopanib. Our patient had PFS with sorafenib for more than 2 years and remained in a good performance status (ECOG 1). For Pazopanid, the median PFS for this treatment option was 6.5 months.

Conclusions: The results were good and show a promising method for the treatment of this rare but severe malignancy.

Keywords: Fibromatosis, Aggressive • Pazopanib • Sorafenib

Full-text PDF: https://www.amjcaserep.com/abstract/index/idArt/939862
Background

Desmoid tumors, also known as aggressive fibromatosis, are a fibroblastic proliferation with an extreme inclination for local dissemination and recurrence but with a limited metastasizing capacity [1]. Aggressive fibromatosis is rare, with an estimated incidence of 2-5 patients per million population annually in Europe [2], peaking at ages 25-35 years [3]. Desmoid tumors can arise in any part of the body and are generally classified in anatomic terms as extra-abdominal, abdominal, or intra-abdominal [3]. The most frequently affected areas are the extremities, the abdominal wall, and the mesentery [3]. About 85-90% of cases show mutations in the \textit{b-catenin (CTNNB1)} gene, resulting in the accumulation of b-catenin in the nucleus [4]. In CTNNB1 wild-type patients, germinal mutations in the \textit{adenomatous polyposis coli (APC)} gene, such as in familial adenomatous polyposis (FAP) or Gardner’s syndrome, lead to nuclear accumulation of b-catenin [1]. Regarding its pathologic features, aggressive fibromatosis is characterized by immunohistochemical positivity of nuclear b-catenin, smooth-muscle actin, vimentin, cyclooxygenase-2, and \(\beta\)-estrogen receptors, with negative staining for desmin, S100, CD34, and c-KIT [1,5]. Recent evidence regarding management of the disease suggests the benefit of active surveillance, despite the long-standing paradigm of immediate surgical approach [1].

Case Report

A 74-year-old female patient with a past medical history of arterial hypertension, hypothyroidism, generalized anxiety disorder, allergic urticaria, and cholecystectomy was admitted to “Laikon” General Hospital of Athens, Greece due to pre-renal acute kidney injury. The patient described multiple, daily episodes of watery diarrhea, with no blood or mucus, in the previous 12 days. She reported no fever, weight loss, night sweats, or abdominal pain.

On clinical evaluation, the patient was afebrile with a blood pressure of 95/60 mmHg, a heart rate of 80 beats per minute, an oxygen saturation of 98% on ambient air, and a respiratory rate of 22 breaths per minute. Stool culture isolated \textit{Clostridium difficile}, positive for both toxin A and B, so treatment with 250 mg vancomycin q.i.d. was initiated.

Abdominal ultrasonography was performed, which revealed 2 cystic liver lesions with a maximum diameter of 4.4 cm and 3.3 cm, respectively, and a solid echogenic mass of 4.9×3.5×4.3 cm in the anatomic region of the remnant of the cystic duct, with autonomous vascularization. The abdominal computed tomography (CT), performed with only per os contrast due to sustained renal insufficiency, revealed areas of hypodensity in the liver parenchyma without any pathological findings from the pancreas, spleen, kidneys, or adrenal glands. Diverticulosis with no signs of inflammation was evident in the recto-sigmoid area. Colonoscopy revealed no lesions in the large intestine and the terminal ileus; biopsies taken showed mucosal edema and a mild increase in the chronic inflammatory constituents.

A following-up EGD revealed improvement, with areas of slight erythema in the volvulus and the second part of the duodenum. An abdominal CT with intravenous contrast was performed, showing once again the aforementioned areas of hypodensity in the liver parenchyma; an area of hypodensity with inflammatory characteristics adjacent to the inferior liver surface was also revealed. An abdominal MRI was then performed (Figure 1), which showed a 12×6×10 cm intra-abdominal tumorous lesion with irregular signal distribution, emerging from the muscularis propria of the large intestine, showing a high signal in T2 sequence, and a low signal in T1, but no marked deterioration in the diffusion sequence. The lesion seemed to be in close proximity to the right colic flexure and the proximal part of the transverse colon, causing blurring of the pericolic fat and lymph node enlargement. It is a large-intestine tumor that infiltrates the surrounding structures and also infiltrates the liver. A biopsy of the lesion was performed, showing loosely organized mesenchymal tissue with spindle cells and mucus stroma.

Immunohistochemistry performed in the tissue was positive for SMA and b-catenin and negative for DOG1, c-kit, CD34, S100, desmin, and MDM-2. The case was referred to the hospital’s Multidisciplinary Team Meeting (MDT) where surgical resection of the tumor was decided [6]. A right hemicolectomy was performed with tumor-free surgical margins (R0 resection). A whitish tumor that was scirrhous and elastic in palpation with dimensions of 18×7×6 cm and 10 lymph nodes of 0.1 to 0.7 cm in diameter were also resected. According to the microscopic examination, the specimen revealed a hypocellular mesenchymal neoplasm comprising spindle and oval-shaped cells with patternless arrangement in a thick collagenous background that showed areas of edema and hyalinization. Cellular atypia was minimal with a small number of mitoses observed. The tumor was accompanied by a rich inflammatory infiltrate that included plasma cells and mast cells, while necrotic areas were absent. The neoplasm invaded part of the muscularis propria extending to the pericolic fat tissues., tumor cells expressed only SMA and b-catenin on immunohistochemistry and were negative for desmin, S100, CD117, and DOG-1; thus, a diagnosis of desmoid fibromatosis was set (Figure 2).

The tissue testing of exon 18 of the \textit{PDGFR} gene detected a silent mutation while the analysis of exons 9,11,13 and 17 of the \(c\)-kit gene was negative while immunohistochemistry had exactly the same results with the biopsy lesion. The patient was referred
to the Medical Oncology Department for further management and a 3- to 6-month surveillance with MRI was planned.

After 6 months, the patient presented with abdominal distension. Abdominal ultrasound revealed large-scale ascites and paracentesis. The ascetic fluid was transparent yellow with a total protein of 5.9 g/dL and serum-ascites albumin gradient of less than 1.1 g/dL, compatible with non-portal hypertension-induced ascites due to peritoneal cavity fibromatosis. An abdominal MRI documented the existence of a tumorous lesion arising from the fourth and fifth hepatic lobes, with a maximal dimension of 9.2×9.5 cm, adjacent to bowel loops and the right abdominal wall. First-line treatment with NSAIDs (nimesulide) and tamoxifen at 100 mg daily was initiated [7-9]. Six months after the last MRI and 3 months after the initiation of tamoxifen, a follow-up MRI was performed [10]. The tumor had increased to 14.2×11×12.3 cm and peritoneal implants were noted; no distant metastases in the lung or brain were found. Analogously, at the next follow-up, the tumor had reached 20.3×19 cm maximal dimensions, and no new metastases were found.

One month later, eosinophilia, with an absolute count of 4.310 cells per ml, was found in routine laboratory testing and the patient was hospitalized for investigation. Hypereosinophilia was considered a secondary reaction to her primary malignancy [11,12]. At the next follow-up 1 month later, disease progression was noticed and treatment with sorafenib 400 mg twice daily was initiated [13,14]. The patient responded well to the medical treatment, with no adverse events while she continued to receive medical care regularly for paracentesis of ascitic fluid. Disease progression was documented 21 months later, and pazopanib, a multi-targeted tyrosine kinase inhibitor (TKI), as the third line treatment was initiated at 400 mg once daily [15,16] (Table 1). Follow-up at 3 and 9 months with CT scans revealed stable disease, with a good performance status (ECOG: 1) and no serious adverse events.

Discussion

Desmoid tumors exhibit variable clinical outcomes. The primary treatment approach was surgery but there has been a recent shift toward a more conservative management strategy with the aim of standardizing practices among clinicians [17]. The initial approach of “active surveillance” is considered as the first step after diagnosis for most patients [18]. Due to the variable nature of the disease, other treatments should only be given in cases of persistent progression [19]. “Active surveillance” involves continuous monitoring of patients, typically with an initial MRI (or CT if MRI is not feasible) within the first 2 months, followed by assessments at 3- to 6-month intervals.
Table 1. The treatment approach.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Period</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st line treatment</td>
<td>Tamoxifen 100 mg×1</td>
<td>09/SEP/2018-10/JUL/2019</td>
</tr>
<tr>
<td>2nd line treatment</td>
<td>Sorafenib 200 mg 2×2</td>
<td>29/JAN/2020-24/NOV/2021</td>
</tr>
<tr>
<td>3rd line treatment</td>
<td>Pazopanib 400 mg×1</td>
<td>01/FEB/2022-now</td>
</tr>
</tbody>
</table>

Figure 2. The tumor exhibited low cellularity, comprising mainly spindle cells with minimal atypia in a thick collagenous background (H & E staining) (A). On immunohistochemistry, tumor cells were positive for SMA (B) and beta-catenin (C). On immunohistochemistry, tumor cells were negative for desmin (D). Magnification 20×.
Biopsies should be approached with caution, as use of imatinib [26,27]. Generally, it is advisable to initiate treatment with less toxic therapies and progress to more toxic agents in a stepwise manner [17,28]. When selecting a systemic treatment option from the various possibilities, several factors should be considered, including [17] the level of evidence, [18] overall response rate, [19] progression-free survival (PFS) rate, [22] ease of administration, and [23] expected drug toxicity [17].

Conclusions

In conclusion, intra-abdominal desmoid tumors are rare, and there are few clinical trials, case reports, and data in the literature. The therapeutic strategies combine surgical intervention and chemotherapy. Our patient received the newest therapies for desmoids tumors and is in a very good performance status without any serious adverse events. The results so far are good, proving this treatment’s efficacy and revealing a promising method for treatment of this rare but severe malignancy.

Declaration of Figures’ Authenticity

All figures submitted have been created by the authors who confirm that the images are original with no duplication and have not been previously published in whole or in part.

References:

Regarding the choice of medical therapy, the lack of comparative studies prevents the proposal of a specific treatment algorithm [21]. Currently, randomized data are available only for sorafenib, pazopanib, and methotrexate plus vinblastine [17,24,26]. Prospective phase II studies have been undertaken to evaluate the efficacy of administering low-dose chemotherapy combining methotrexate and vinblastine, as well as use of imatinib [26,27]. Generally, it is advisable to initiate treatment with less toxic therapies and progress to more toxic agents in a stepwise manner [17,28]. When selecting a systemic treatment option from the various possibilities, several factors should be considered, including [17] the level of evidence, [18] overall response rate, [19] progression-free survival (PFS) rate, [22] ease of administration, and [23] expected drug toxicity [17].
16. Toulmonde M, Pulido M, Ray-Coquard I, et al. Pazopanib or methotrexate-
vinblastine combination chemotherapy in adult patients with progressive
desmoid tumours (DESMOPAZ): A non-comparative, randomised, open-la
bel, multicentre, phase 2 study. Lancet Oncol. 2019;20(9):1263-72
mours: A joint global consensus-based guideline approach for adult and
 paediatric patients. Eur J Cancer. 2020;127:96-107
sporadic desmoid-type fibromatosis: A European Consensus Initiative be
tween Sarcoma PAtients EuroNet (SPAEN) and European Organization for
Research and Treatment of Cancer (EORTC)/Soft Tissue and Bone Sarcoma
19. Kasper B, Ströbel P, Hohenberger P. Desmoid tumors: Clinical features and
treatment options for advanced disease. Oncologist. 2011;16:682-93
in detecting recurrent aggressive fibromatosis at two multidisciplinary sar
aggressive fibromatosis on contrast-enhanced MRI with an evaluation of po
tential risk factors for recurrences in MRI follow-up. Rofo. 2020;192(5):448-57
gression arrest in RECIST progressive desmoid tumours: Final results of a
phase II study of the German Interdisciplinary Sarcoma Group (GiSG). Eur
J Cancer. 2017;76:60-67
23. Cates JMM. Prognostic factors for second recurrence after surgical resection
of recurrent desmoid-type fibromatosis. Pathol Oncol Res. 2015;21:1085-90
24. Duggal A, Dickinson IC, Sommerville S, Galle P. The management of extra
dality of doxorubicin plus dacarbazine for the treatment of desmoid tu
2006;24:102-5
plus vinblastine/vinorelbine in a large series of patients affected by des
moid-type fibromatosis. Cancer J 2017;23:86-91
bromatosis: results of a phase II multicenter Sarcoma Alliance for Research
through Collaboration (SARC) trial. Clin Cancer Res. 2010;16:4884-91
Lett. 2021;21:43