27 December 2020: Articles
Unexpected Pathogenic p.V804M Variant Leads to the Clinical Diagnosis and Management of Medullary Thyroid Carcinoma
Unusual clinical course
Arezou A. Ghazani123ABDEF, Katelyn M. Breen45BEF, Meaghan Dwan45BEF, Justine A. Barletta23BDE, Donna R. Vatnick45BE, Samantha M. Stokes45BEF, Caroline Block24BD, Gerard M. Doherty26BD, Aviva Y. Cohn7BD, Ellen Marqusee247BD, Judy E. Garber245DE, Huma Q. Rana245ABDEF*DOI: 10.12659/AJCR.927415
Am J Case Rep 2020; 21:e927415
Abstract
BACKGROUND: RET p.V804M is a known activating oncogenic variant that confers an increased risk for medullary thyroid carcinoma (MTC). Based on age-specific penetrance, the American Thyroid Association (ATA) categorizes this variant as posing moderate risk. Therefore, ATA guidelines endorse prophylactic thyroidectomy for carriers in childhood (by age 5–10 years) or adulthood, or when the serum calcitonin level becomes elevated. The recommendation for thyroidectomy is increasingly controversial due to the recently reported low penetrance of the RET p.V804M variant in a large unbiased ascertainment cohort.
CASE REPORT: We describe the unexpected identification of this variant in a 62-year-old woman undergoing broad, multigene cancer panel testing for her personal and family history of breast cancer. There was no known family history of MTC. Biochemical screening prompted by the RET p.V804M result revealed a mildly elevated serum calcitonin. Pathology examination of her thyroidectomy specimen revealed multifocal medullary thyroid microcarcinoma; her sibling’s prophylactic thyroidectomy after a RET p.V840M-positive result similarly revealed early-stage MTC.
CONCLUSIONS: This report demonstrates the value of genetic counseling, shared decision-making, cascade testing, and timely thyroidectomy in the management of a patient with an unexpected RET p.V804M result.
Keywords: Multiple Endocrine Neoplasia Type 2a, Proto-Oncogene Proteins c-ret, Thyroidectomy, Carcinoma, Neuroendocrine, Child, Child, Preschool, Pedigree
Background
Medullary thyroid carcinoma (MTC) is an aggressive malignancy of parafollicular C cells of the thyroid gland connective tissue, resulting in abnormal production of calcitonin hormone. MTC accounts for 5%–8% of all thyroid cancers [1]. While most cases are sporadic, 25% of MTCs occur in patients with familial multiple endocrine neoplasia type 2 (MEN2) syndrome. MEN2 has 3 distinct phenotypes: MEN2A, MEN2B, and familial MTC. MEN2A and familial MTC have an autosomal dominant pattern of inheritance characterized by the presence of heterozygous pathogenic variants in the
The p.V804M variant is the most common pathogenic variant (PV) in
Herein, we present our experience with and clinical management of a patient with breast cancer who had an unexpected finding of the
Case Report
A 62-year-old woman with a personal and family history of breast cancer was referred to the Division of Cancer Genetics and Prevention at Dana-Farber Cancer Institute for evaluation. One year prior to her visit, she had been diagnosed with multifocal, ER-positive, PR-positive, and HER-2 negative invasive lobular carcinoma of the right breast. She was treated with curative intent with a unilateral mastectomy and aromatase inhibitor systemic therapy.
Reported family history was notable for the proband’s mother having multiple primary cancers, including breast cancer at age 49, colorectal cancer at age 60, and leukemia at age 65 (Figure 1). There was no reported family history of thyroid cancer, calcium disorder, or pheochromocytoma. The patient’s maternal ancestry is English and French, and her paternal ancestry is Czech, with no known Ashkenazi Jewish ancestry or consanguinity. Given her personal and family breast cancer histories, the patient was counseled and consented to genetic testing analyzing 84 cancer susceptibility genes (Invitae, CA, USA). Results were positive for the heterozygous pathogenic variant
Given the association of
The patient underwent thyroid oncology evaluation. She was asymptomatic at the time with no pain or swelling in her neck, no dysphagia or odynophagia, and no changes in voice. Physical examination was normal with no evidence of enlarged thyroid, palpable lymph nodes, or thyroid masses. A thyroid ultrasound and biochemical screening were obtained. The ultrasound results were normal (with no thyroid nodules or abnormal adenopathy) as were plasma metanephrine, parathyroid hormone (PTH), serum calcium, and carcinoembryonic antigen (CEA). Calcitonin (electrochemiluminescence assay by Roche Diagnostics Inc., IN, USA) was mildly elevated at 9.9 pg/mL (normal <7.6 pg/mL). The calcitonin remained elevated 2 weeks later at 10.4 pg/mL.
The patient underwent surgical evaluation and, after careful consideration of the surgical risks and benefits, proceeded with thyroidectomy. She had an uncomplicated total thyroidectomy with no evidence of extrathyroidal invasion. There were no grossly abnormal lymph nodes. The left upper and bilateral lower parathyroid glands were preserved on their normal blood supplies. The right upper parathyroid gland was devascularized during dissection and was reimplanted into the right sternocleidomastoid muscle. The bilateral recurrent laryngeal nerves were dissected. They were left intact and with normal electromyography signals with stimulation of the ipsilateral vagus nerve at the outset and completion of all dissection.
Pathology examination of the specimen identified 4 foci of medullary thyroid microcarcinomas (largest measuring 0.2 cm) in the right mid-upper and left mid-upper lobes (Figure 2). No lymphovascular invasion and no extrathyroidal extension were identified. Background thyroid tissue showed C-cell hyperplasia, highlighted by calcitonin stains (Figure 2).
The patient’s course was complicated by postoperative hypocalcemia with hypoparathyroidism (calcium of 8.2 mg/dL with PTH of 5 pg/mL). She was weaned off calcitriol, and she is maintained on calcium citrate 950 mg (200 mg elemental) 3 times a day and levothyroxine 100 μg daily. Follow-up laboratory results were normal as follows: calcitonin undetectable, calcium 9.2 mg/dL, PTH 14 pg/mL, and thyrotropin 1.94 μIU/mL.
One of the patient’s sisters (age 57) tested positive for the
Discussion
The p.V804M variant is the most frequent pathogenic variant in the
Data from retrospective analysis of 140 cases of MTC have shown that the majority of MTC cases (56%) were diagnosed at stage IV, while only 19% of patient were diagnosed at stage I, 15% at stage II, and 10% in stage III [15]. The 10-year survival rates for patients with stages I, II, III, and IV MTC are reported to be 100%, 93%, 71%, and 21%, respectively [5,16]. A recent Danish nationwide retrospective study of MTC patients (diagnosed with hereditary MTC by screening, without regional metastases, or with stage I-III disease) had similar survival to the general population. However, the presence of distant metastasis resulted in a worse outcome [17]. With late tumor stage being a reliable predictor of survival in MTC patients [18], the efforts to identify at-risk patients and manage risk remain important.
Risk stratification of MEN2 is by the
Measurement of serum calcitonin has been used as an important tumor marker in patients with MTC. However, consensus on its role in the evaluation of a thyroid nodule remains elusive [20]. Studies have reported negative calcitonin in nonsecretory MTC [21], indicating that normal serum calcitonin does not exclude the presence of MTC [22,23]. In a study evaluating 30 family members spanning 3 generations of a Turkish family, 17 members were positive for
Based on the estimated penetrance of
Our group and others have previously reported incidental findings in which the majority of pathogenic or presumed pathogenic cancer variants in various studies were unexpectedly discovered in genes not directly related to the patient’s primary indication [29–31]. Indeed, in this era of large-scale genome sequencing, incidental or unexpected findings involving cancer genes will only increase. Reexamination of classic phenotypes and penetrance across the cancer predisposition syndrome spectrum is required and is occurring for genes including
Conclusions
We have described the early diagnosis of medullary thyroid microcarcinomas through the unexpected finding of the
As the epidemiology of various cancer predisposition syndromes is re-evaluated and guidelines for management reconsidered, shared decision-making with the patient is critical. In this case, patient-specific factors were important in the management of this unexpected cancer predisposition.
Patient-specific factors were good overall health and excellent breast cancer prognosis. Variant-specific factors included the attenuated penetrance in individuals not ascertained through MTC families. Disease-specific factors included sensitivity and specificity of biochemical surveillance. The patient preferred surgical management due to low risk tolerance secondary to prior malignancy and tolerability of the health consequences of surgical intervention.
This report highlights the value of shared decision-making and cascade genetic testing in the clinical management of a patient who was unexpectedly revealed to be a carrier of the
Figures
Figure 1.. Pedigree of a family with RET p.V804M variant. The pedigree depicts individuals with cancer, cancer types, and RET p.V804M genotype when available. Positive and negative signs denote presence and absence of RET p.V804M, respectively. Circles and squares denote female and male family members, respectively. Arrow indicates proband. Numbers under circles or squares reflect current age or age at death if deceased, and numbers beside diagnosis reflect age at diagnosis. Filled quadrants denote affected conditions. BR – breast cancer; CO – colon cancer; MTC – medullary thyroid cancer; CLL – chronic lymphoid leukemia. Figure 2.. Histologic findings in the thyroidectomy specimen. (A) An example of a medullary microcarcinoma (H&E stain) at ×100 magnification. (B) C-cell hyperplasia (H&E stain) at ×400 magnification. (C) Calcitonin stain highlights the C cells at ×400 magnification. H&E, hematoxylin and eosin.References:
1.. Pacini F, Castagna MG, Cipri C, Schlumberger M, Medullary thyroid carcinoma: Clin Oncol (R Coll Radiol), 2010; 22(6); 475-85
2.. Wagner SM, Zhu S, Nicolescu AC, Mulligan LM, Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2: Clinics (Sao Paulo), 2012; 67(Suppl. 1); 77-84
3.. Eng C, Clayton D, Schuffenecker I, The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis: JAMA, 1996; 276(19); 1575-79
4.. Loveday C, Josephs K, Chubb D, p.Val804Met, the most frequent pathogenic mutation in RET, confers a very low lifetime risk of medullary thyroid cancer: J Clin Endocrinol Metab, 2018; 103(11); 4275-82
5.. Wells SA, Asa SL, Dralle H, Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma: Thyroid, 2015; 25(6); 567-610
6.. Rich TA, Feng L, Busaidy N, Prevalence by age and predictors of medullary thyroid cancer in patients with lower risk germline RET proto-onco-gene mutations: Thyroid, 2014; 24(7); 1096-106
7.. Mukherjee S, Zakalik D, RET codon 804 mutations in multiple endocrine neoplasia 2: Genotype-phenotype correlations and implications in clinical management: Clin Genet, 2011; 79(1); 1-16
8.. Feldman GL, Edmonds MW, Ainsworth PJ, Variable expressivity of familial medullary thyroid carcinoma (FMTC) due to a RET V804M (GTG-->ATG) mutation: Surgery, 2000; 128(1); 93-98
9.. Lecube A, Hernandez C, Oriola J, V804M RET mutation and familial medullary thyroid carcinoma: Report of a large family with expression of the disease only in the homozygous gene carriers: Surgery, 2002; 131(5); 509-14
10.. Lesueur F, Cebrian A, Cranston A, Germline homozygous mutations at codon 804 in the RET protooncogene in medullary thyroid carcinoma/multiple endocrine neoplasia type 2A patients: J Clin Endocrinol Metab, 2005; 90(6); 3454-57
11.. Learoyd DL, Gosnell J, Elston MS, Experience of prophylactic thyroidectomy in multiple endocrine neoplasia type 2A kindreds with RET codon 804 mutations: Clin Endocrinol (Oxf), 2005; 63(6); 636-41
12.. Karrasch T, Herbst SM, Hehr U, How to assess the clinical relevance of novel RET missense variants in the absence of functional studies?: Eur Thyroid J, 2016; 5(1); 73-77
13.. Frohnauer MK, Decker RA, Update on the MEN 2A c804 RET mutation: is prophylactic thyroidectomy indicated?: Surgery, 2000; 128(6); 1052-58
14.. Wolfe HJ, Melvin KE, Cervi-Skinner SJ, C-cell hyperplasia preceding medullary thyroid carcinoma: N Engl J Med, 1973; 289(9); 437-41
15.. Simoes-Pereira J, Bugalho MJ, Limbert E, Leite V, Retrospective analysis of 140 cases of medullary thyroid carcinoma followed-up in a single institution: Oncol Lett, 2016; 11(6); 3870-74
16.. Modigliani E, Cohen R, Campos JM, Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: Results in 899 patients. The GETC Study Group. Groupe d’etude des tumeurs a calcitonine: Clin Endocrinol (Oxf), 1998; 48(3); 265-73
17.. Mathiesen JS, Kroustrup JP, Vestergaard P, Survival and long-term biochemical cure in medullary thyroid carcinoma in Denmark 1997–2014: A nationwide study: Thyroid, 2019; 29(3); 368-77
18.. Rios A, Rodriguez JM, Febrero B, [Prognostic value of clinical, histo-pathological and immunohistochemical features in medullary thyroid cancer.]: Med Clin (Barc), 2012; 139(7); 277-83 [in Spanish] Erratum in: Med Clin (Barc). 2014; 142(5): 233 [in Spanish]
19.. Voss RK, Feng L, Lee JE, Medullary thyroid carcinoma in MEN2A: ATA moderate- or high-risk RET mutations do not predict disease aggressiveness: J Clin Endocrinol Metab, 2017; 102(8); 2807-13
20.. Baetu M, Dobrescu R, Novel markers for early diagnosis and prognostic classification in medullary thyroid carcinoma: Acta Endocrinol (Buchar), 2017; 13(4); 519-22
21.. Gambardella C, Offi C, Patrone R, Calcitonin negative medullary thyroid carcinoma: A challenging diagnosis or a medical dilemma?: BMC Endocr Disord, 2019; 19(Suppl. 1); 45
22.. Roy M, Chen H, Sippel RS, Current understanding and management of medullary thyroid cancer: Oncologist, 2013; 18(10); 1093-100
23.. Trimboli P, Giovanella L, Serum calcitonin negative medullary thyroid carcinoma: A systematic review of the literature: Clin Chem Lab Med, 2015; 53(10); 1507-14
24.. Basaran MN, Tuna MM, Karakilic E, Characterization of V804M-mutated RET proto-oncogene associated with familial medullary thyroid cancer, report of the largest Turkish family: J Endocrinol Invest, 2015; 38(5); 541-46
25.. Allelein S, Ehlers M, Morneau C, Measurement of basal serum calcitonin for the diagnosis of medullary thyroid cancer: Horm Metab Res, 2018; 50(1); 23-28
26.. Kakita-Kobayashi M, Ueda Y, Tanase-Nakao K, A case of C-cell hyperplasia in an asymptomatic V804M Ret mutation carrier: Can the calcium infusion test predict C-cell hyperplasia?: AACE Clin Case Rep, 2015; 1(2); e92-95
27.. Toledo SP, Lourenco DM, Santos MA, Hypercalcitoninemia is not pathognomonic of medullary thyroid carcinoma: Clinics (Sao Paulo), 2009; 64(7); 699-706
28.. Kalia SS, Adelman K, Bale SJ, Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): A policy statement of the American College of Medical Genetics and Genomics: Genet Med, 2017; 19(2); 249-55
29.. Ghazani AA, Oliver NM, St Pierre JP, Assigning clinical meaning to somatic and germ-line whole-exome sequencing data in a prospective cancer precision medicine study: Genet Med, 2017; 19(7); 787-95
30.. Aguirre AJ, Nowak JA, Camarda ND, Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine: Cancer Discov, 2018; 8(9); 1096-111
31.. Mandelker D, Zhang L, Kemel Y: JAMA, 2017; 318(9); 825-35
32.. Rana HQ, Gelman R, LaDuca H, Differences in TP53 mutation carrier phenotypes emerge from panel-based testing: J Natl Cancer Inst, 2018; 110(8); 863-70
33.. Roberts ME, Ranola JMO, Marshall ML: JAMA Oncol, 2019; 5(9); 1325-31
34.. Xicola RM, Li S, Rodriguez N, Clinical features and cancer risk in families with pathogenic CDH1 variants irrespective of clinical criteria: J Med Genet, 2019; 56(12); 838-43
Figures
In Press
Case report
Invasive Hydatidiform Mole Mimicking Ectopic Pregnancy: A Case Report and Literature AnalysisAm J Case Rep In Press; DOI: 10.12659/AJCR.946388
Case report
Managing Chyle Leakage Following Right Retroperitoneoscopic Adrenalectomy: A Case StudyAm J Case Rep In Press; DOI: 10.12659/AJCR.945469
Case report
Cervical Neuroendocrine Carcinoma Presenting as Isolated Large Ovarian Metastasis: A Case ReportAm J Case Rep In Press; DOI: 10.12659/AJCR.945078
Case report
Acalculous Cholecystitis as an Atypical Presentation of Viral Pericarditis: A Case ReportAm J Case Rep In Press; DOI: 10.12659/AJCR.946029
Most Viewed Current Articles
21 Jun 2024 : Case report 81,734
Intracranial Parasitic Fetus in a Living Infant: A Case Study with Surgical Intervention and Prognosis Anal...DOI :10.12659/AJCR.944371
Am J Case Rep 2024; 25:e944371
07 Mar 2024 : Case report 48,471
Neurocysticercosis Presenting as Migraine in the United StatesDOI :10.12659/AJCR.943133
Am J Case Rep 2024; 25:e943133
20 Nov 2023 : Case report 22,406
Azithromycin Treatment for Acne Vulgaris: A Case Report on the Risk of Clostridioides difficile InfectionDOI :10.12659/AJCR.941424
Am J Case Rep 2023; 24:e941424
07 Jul 2023 : Case report 19,447
A Classical Case of Cesarean Scar Endometriosis in a 35-Year-Old Woman Presenting with Cyclical Abdominal P...DOI :10.12659/AJCR.940200
Am J Case Rep 2023; 24:e940200