Logo American Journal of Case Reports

Call: 1.631.629.4328
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo American Journal of Case Reports Logo American Journal of Case Reports Logo American Journal of Case Reports

24 May 2023: Articles  Japan

Autopsy Findings of Severe COVID-19 Pneumonia Combined with Pulmonary Aspergillosis, Pneumothorax, and Pulmonary Thromboembolisms

Challenging differential diagnosis, Diagnostic / therapeutic accidents, Management of emergency care, Adverse events of drug therapy, Educational Purpose (only if useful for a systematic review or synthesis), Rare coexistence of disease or pathology

Nobuhiro Kanaji ORCID logo1ABCDEF*, Nachino Kimura2BCDE, Akihiro Kondo3BE, Naoki Watanabe1E, Takuya Inoue1E, Hitoshi Mizoguchi1E, Yuta Komori1E, Kosuke Kawada1E, Norimitsu Kadowaki1E

DOI: 10.12659/AJCR.939251

Am J Case Rep 2023; 24:e939251




BACKGROUND: COVID-19-associated pulmonary aspergillosis (CAPA), acute respiratory distress syndrome (ARDS), pulmonary thromboembolism (PTE), and pneumothorax are complications in severe COVID-19 patients.

CASE REPORT: A 64-year-old Japanese man was diagnosed with COVID-19. His past medical history included uncontrolled diabetes mellitus. He had no vaccination for COVID-19. Despite oxygen inhalation, remdesivir, dexamethasone (6.6 mg per day), and baricitinib (4 mg per day for 12 days), the disease progressed. The patient was supported with mechanical ventilation. Dexamethasone was switched to methylprednisolone (1000 mg per day for 3 days, and then reduced by half every 3 days), and intravenous heparin was initiated. Voriconazole (800 mg on the first day and then 400 mg per day for 14 days) was also started because Aspergillus fumigatus was detected in intratracheal sputum. However, he died of respiratory failure. Pathological findings of autopsy showed: (1) diffuse alveolar damage in a wide area of the lungs, which is consistent with ARDS due to COVID-19 pneumonia, (2) PTEs in peripheral pulmonary arteries, (3) CAPA, and (4) pneumothorax induced by CAPA. These conditions were all active states, suggesting that the treatments were insufficient.

CONCLUSIONS: Autopsy revealed active findings of ARDS, PTEs, and CAPA in a severe COVID-19 patient despite heavy treatment for each condition. CAPA can be a cause of pneumothorax. It is not easy to improve these conditions simultaneously because their treatments can induce antagonizing biological actions. To prevent severe COVID-19, it is important to reduce risk factors, such as by vaccination and appropriate blood glucose control.

Keywords: Autopsy, COVID-19, Pneumothorax, pulmonary aspergillosis, Pulmonary Embolism, Male, Humans, Middle Aged, COVID-19, Dexamethasone


Coronavirus disease 2019 (COVID-19) is accompanied by many complications. Pneumonia is most frequently observed and can cause acute respiratory distress syndrome (ARDS). Pulmonary thromboembolism (PTE) is also a well-known complication. A pooled analysis of 3342 COVID-19 patients revealed that the incidence of PTE was 16.5% in total, and reached 24.7% in patients admitted to the Intensive Care Unit (ICU) [1]. In a study of mechanically ventilated COVID-19 patients in an ICU, 20 of 168 patients (11.9%) developed COVID-19-associated pulmonary aspergillosis (CAPA), 13 of whom (65%) died [2]. A review of 34 CAPA cases also reported high mortality (64.7%) [3]. However, autopsy cases with multiple complications associated with COVID-19 have not been well reported. Here, we describe an autopsy case with severe COVID-19 pneumonia, PTE, CAPA, and CAPA-induced pneumothorax to help in the understanding of severe COVID-19 and the future development of its treatment strategy.

Case Report

A 64-year-old Japanese man presented with fever and a cough (day 0) and was diagnosed with COVID-19 by positivity for SARS-CoV-2 PCR in the delta variant spread period in Japan (July to September, 2021). Six days later (day 6), COVID-19 pneumonia was recognized by computed tomography showing a wide area of ground-glass opacities (Figure 1A). He was admitted to a hospital because of hypoxemia and started to receive oxygen inhalation, remdesivir (200 mg on the first day and then 100 mg per day), dexamethasone (6.6 mg per day), baricitinib (4 mg per day), and edoxaban (60 mg per day). However, his respiratory condition worsened, noninvasive positive-pressure ventilation (NPPV) management was initiated on day 15, and he was transferred to our hospital on day 17. He had never received SARS-CoV-2 vaccination. Although he had type 2 diabetes mellitus, he did not receive any treatment. He had no other comorbidities. SARS-CoV-2 was again positive by PCR. His height was 163 cm, and his body weight was 73 kg (body mass index 27.5). The respiratory rate was 28 per minute. Fine crackles were auscultated. SpO2 was 90% under NPPV with FiO2 100%. Blood tests revealed WBC 24 740/mL (neutrophils 95.9%), hemoglobin 13.6 g/dL, platelets 59 000/mL, C-reactive protein 2.94 mg/dL, lactate dehydrogenase 985 U/L, glucose 318 mg/dL, HbA1c 8.5%, KL-6 5671 U/mL, ferritin 1318 ng/mL, D-dimer 12.2 mg/mL, and b-D-glucan 9.1 pg/mL. Chest CT showed extremely extended ground-glass opacities in both lung fields with partial consolidation posteriorly (Figure 1B).

Arterial blood gas analysis (NPPV, FiO2 100%) showed pH 7.359, PaCO2 42.9 Torr, and PaO2 58.7 Torr. Invasive mechanical ventilation was started. Management by prone positioning could be implemented for only 1 day due to manpower issues. Methylprednisolone (1000 mg per day) instead of dexamethasone was administered because of progressive respiratory failure during dexamethasone and doses were reduced by half every 3 days. Intravenous unfractionated heparin was started continuously based on its short half-time and adjusted according to activated partial thromboplastin time. A foot pump was also used to combat risk of thromboembolism. Because Aspergillus fumigatus was detected from intratracheal samples when the patient began invasive mechanical ventilation management prior to the start of high-dose methylprednisolone, voriconazole was started (800 mg on the first day and then 400 mg per day). Despite these treatments, the platelet count further decreased to 13 000/mL, and platelet transfusions were needed. Hypoxemia deteriorated and bilateral consolidations on chest X-ray increased on day 28 (Figure 1C). At this time, SARS-CoV-2 PCR was negative. On day 31, right pneumothorax occurred, and a drainage tube was inserted. On day 32, the patient died of respiratory failure.

Autopsy was performed. Macroscopically, there was a hole in the right upper lobe (Figure 2A, arrow). Microscopically, there were several cavities accompanied by hemorrhage and necrosis dominantly in the right upper lobe (Figure 2B). One cavity formation adjacent to the pleural membrane was broken, which was the cause of the pneumothorax (Figure 2B, arrow). In and out of cavities, agglomeration of aspergillus was recognized, consistent with invasive pulmonary aspergillosis (Figure 2C, 2D). Inflammatory cells infiltrated around aspergillus were predominantly neutrophils, with some lymphocytes and histiocytes, accompanied by nuclear waste materials. Aspergillus was also detected in the left upper lobe. In a wider area of both lungs than pulmonary aspergillosis, alveolar structures were destroyed with fibrotic changes and infiltration of inflammatory cells and fibroblasts (Figure 3A), suggesting diffuse alveolar damage (DAD) had occurred. The formation of hyaline membranes was also observed (Figure 3B), suggesting a relatively new DAD. Pulmonary edema was shown in some parts (not shown). Many thromboembolisms were recognized in peripheral pulmonary arteries (Figure 3C). Organized thromboses were also observed (Figure 3D). There were no obvious thromboses in organs other than the lungs.


Pathological findings of autopsy are summarized as follows: (1) old and newly developed DAD in a wide area of the lungs, which is consistent with ARDS due to COVID-19 pneumonia; (2) PTEs in peripheral pulmonary arteries; (3) CAPA; and (4) pneumothorax by CAPA. The autopsy clarified that these pathological changes led to respiratory failure.

DAD is the most common pathological finding of ARDS due to COVID-19 pneumonia [4]. DAD was recognized in 127 (80.9%) of 157 COVID-19 patients in whom postmortem autopsy was performed [5]. In the present case, various time phases of DAD were recognized: the exudative phase, represented by the formation of hyaline membranes; the proliferative phase, in which many inflammatory cells and fibroblasts are present; and the fibrotic phase, in which fibrosis is dominant. Although over 1 month had passed from COVID-19 onset, and SARS-CoV-2 PCR had already turned negative, findings of not only the late phase but also the early phase of ARDS were observed. This might be suggestive of insufficiency of the dose or period of corticosteroids or non-response to corticosteroids.

Corticosteroids are now recommended for severe COVID-19 pneumonia [6]. In the RECOVERY trial, dexamethasone (6 mg/day for 10 days) decreased mortality for COVID-19 patients receiving either oxygen or invasive mechanical ventilation [7]. A recent prospective randomized trial showed that the methylprednisolone (2 mg/kg/day) group (n=47) demonstrated better clinical status, including a lower admission rate, improvement in the WHO ordinal scale, and a lower rate of mechanical ventilation use, than the dexamethasone (6 mg/day) group (n=46) [8]. There is no evidence of efficacy of high-dose corticosteroids such as methylprednisolone pulse therapy for COVID-19 pneumonia. In the present case, ARDS progressed even after treatment with a high dose of methylprednisolone. On the other hand, there are COVID-19 cases that improve without corticosteroid. There is no uniform dose of corticosteroid suitable for all cases. Thus, the quantity of necessary corticosteroids should be decided for each case depending on the clinical situation, such as infection.

Venous thromboembolism, including PTE, is well-recognized as a complication of COVID-19. Intensified doses of heparin are recommended for antithrombotic prophylaxis, depending on the clinical or biological severity of COVID-19 [9]. Although low-molecular-weight heparin, such as enoxaparin, would also be effective [10], standard drugs and their doses have not yet been determined for COVID-19. In the present case, an intensified dose of unfractionated heparin was intravenously administered. However, thrombocytopenia continued throughout the course, and autopsy revealed many newly formed PTEs. This suggests that cases exist in which even continuous heparin is insufficient for antithrombotic prophylaxis.

Several autopsies of CAPA cases have been reported [2,11,12]. Several patterns have been reported, including airway colonization [2], focal pulmonary aspergillosis [12], and invasive pulmonary aspergillosis (IPA) [2,11]. The current case was classified as IPA, and the existence of ARDS would be a characteristic finding of CAPA. A study reported that the incidence of CAPA increased in the second wave of the pandemic, in which corticosteroids were regularly used for moderate-to-severe COVID-19 pneumonia, compared with the first wave [11]. As characteristics of patient with CAPA, hypertension, diabetes mellitus, obese, use of mechanical ventilation, and use of corticosteroids have been reported [3]. Interleukin-6 is secreted in severe COVID-19 patients and can play an important role in protective immunity against Aspergillus [13]. In this regard, blockade of interleukin-6 may potentially progress Aspergillus infection. Although the efficacy of corticosteroids in severe COVID-19 pneumonia is established, the pros and cons of corticosteroids in the development of CAPA are not clear. In the present case, risk factors for CAPA development could be uncontrolled diabetes mellitus, dexamethasone (6.6 mg per day for 10 days), baricitinib, management with mechanical ventilation, and no SARS-CoV-2 vaccination history. However, the reason for such medication and respiratory management is severe COVID-19, and we already know some ways to prevent COVID-19 from becoming severe, including vaccination and appropriate blood glucose control.

Pneumothorax is a complication of severe COVID-19 and occurs in approximately 10% of critically ill patients [14,15]. Several causes of pneumothorax in ARDS have been illustrated, including increased alveolar pressure caused by mechanical ventilation, changes in alveolar structure and function, increased negative pressure of the pleural cavity by severe cough or forced inhalation, and shear stress [15]. The present case revealed that CAPA can cause pneumothorax, which is the first report of its kind.

The autopsy of the present case showed that the findings observed in the severe COVID-19 case were gathered in 1 patient. In addition, ARDS, PTE, and CAPA were all still active states; in other words, their treatments were insufficient. The treatment strategy, including the dose of corticosteroids for such severe COVID-19 cases, is an unresolved problem.


Active states of combined ARDS, PTEs, CAPA, and CAPA-induced pneumothorax were observed in 1 patient with severe COVID-19. It is difficult to improve these conditions simultaneously because their treatments can induce antagonizing biological actions. Severe COVID-19 can be prevented by the use of vaccinations and reduction of risk factors.


1.. Suh YJ, Hong H, Ohana M, Pulmonary embolism and deep vein thrombosis in COVID-19: A systematic review and meta-analysis: Radiology, 2021; 298; E70-80

2.. Casalini G, Giacomelli A, Galimberti L, Challenges in diagnosing COVID-19-associated pulmonary aspergillosis in critically ill patients: The relationship between case definitions and autoptic data: J Fungi (Basel), 2022; 8; 894

3.. Lai CC, Yu WL, COVID-19 associated with pulmonary aspergillosis: A literature review: J Microbiol Immunol Infect, 2021; 54; 46-53

4.. Batah SS, Fabro AT, Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians: Respir Med, 2021; 176; 106239

5.. Satturwar S, Fowkes M, Farver C, Postmortem findings associated with SARS-CoV-2: Systematic review and meta-analysis: Am J Surg Pathol, 2021; 45; 587-603

6.. Chaudhuri D, Sasaki K, Karkar A, Corticosteroids in COVID-19 and non-COVID-19 ARDS: A systematic review and meta-analysis: Intensive Care Med, 2021; 47; 521-37

7.. Horby P, Lim WS, Emberson JR, Dexamethasone in hospitalized patients with COVID-19: N Engl J Med, 2021; 384; 693-704

8.. Ranjbar K, Moghadami M, Mirahmadizadeh A, Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: A triple-blinded randomized controlled trial: BMC Infect Dis, 2021; 21; 337

9.. Fontana P, Casini A, Robert-Ebadi H, Venous thromboembolism in COVID-19: Systematic review of reported risks and current guidelines: Swiss Med Wkly, 2020; 150; w20301

10.. Sadeghipour P, Talasaz AH, Rashidi F, Effect of intermediate-dose vs standard-dose prophylactic anticoagulation on thrombotic events, extracorporeal membrane oxygenation treatment, or mortality among patients with COVID-19 admitted to the Intensive Care Unit: The INSPIRATION randomized clinical trial: JAMA, 2021; 325; 1620-30

11.. Fortarezza F, Boscolo A, Pezzuto F, Proven COVID-19-associated pulmonary aspergillosis in patients with severe respiratory failure: Mycoses, 2021; 64; 1223-29

12.. Farias ME, Santana MF, Ferreira L, COVID-19-associated pulmonary aspergillosis in a series of complete autopsies from the Brazilian Amazon: Am J Trop Med Hyg, 2022; 106; 571-73

13.. Shen HP, Tang YM, Song H, Efficiency of interleukin 6 and interferon gamma in the differentiation of invasive pulmonary aspergillosis and pneumocystis pneumonia in pediatric oncology patients: Int J Infect Dis, 2016; 48; 73-77

14.. McGuinness G, Zhan C, Rosenberg N, Increased incidence of barotrauma in patients with COVID-19 on invasive mechanical ventilation: Radiology, 2020; 297; E252-62

15.. Wang XH, Duan J, Han X, High incidence and mortality of pneumothorax in critically ill patients with COVID-19: Heart Lung, 2021; 50; 37-43

In Press

Case report  Brazil

Successful Case of Double Valve Replacement Surgery Using Autologous Blood Transfusion: A Patient's Autonom...

Am J Case Rep In Press; DOI: 10.12659/AJCR.943675  


Case report  Saudi Arabia

Pancreatitis with Intraabdominal Venous Thrombosis as an Initial Presentation of Parathyroid Adenoma: A Rar...

Am J Case Rep In Press; DOI: 10.12659/AJCR.943838  


Case report  Singapore

Delayed-Onset Hypnopompic Visual Hallucinations 20 Years After Initiation of Propranolol Therapy for System...

Am J Case Rep In Press; DOI: 10.12659/AJCR.944342  

Case report  China (mainland)

Odontogenic Keratocyst in Maxillary Sinus with Ectopic Third Molar: A Case Report

Am J Case Rep In Press; DOI: 10.12659/AJCR.944543  

Most Viewed Current Articles

07 Mar 2024 : Case report  USA 39,654

Neurocysticercosis Presenting as Migraine in the United States

DOI :10.12659/AJCR.943133

Am J Case Rep 2024; 25:e943133


10 Jan 2022 : Case report  Germany 31,349

A Report on the First 7 Sequential Patients Treated Within the C-Reactive Protein Apheresis in COVID (CACOV...

DOI :10.12659/AJCR.935263

Am J Case Rep 2022; 23:e935263

23 Feb 2022 : Case report  USA 18,313

Penile Necrosis Associated with Local Intravenous Injection of Cocaine

DOI :10.12659/AJCR.935250

Am J Case Rep 2022; 23:e935250

19 Jul 2022 : Case report  Saudi Arabia 18,005

Atlantoaxial Subluxation Secondary to SARS-CoV-2 Infection: A Rare Orthopedic Complication from COVID-19

DOI :10.12659/AJCR.936128

Am J Case Rep 2022; 23:e936128

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

American Journal of Case Reports eISSN: 1941-5923
American Journal of Case Reports eISSN: 1941-5923